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WEAK LOCALLY HOMOGENEOUS TURBULENCE AND HEAT TRANSFER WITH 

COMBINED TWO-DIMENSIONAL SHEAR A N D  NORMAL STRAIN 

by Robert G. Deiss ler  

Lewis Research C e n t e r  

SUMMARY 

An analysis of the effects of shear and normal strain on weak turbulence and turbulent 
heat transfer is made using two-point correlation equations obtained from the Navier- 
Stokes and energy equations. The correlation equations a r e  converted to spectral form 
by taking their Fourier transforms. The resulting first-order partial differential equa- 
tions a r e  then reduced to  an equivalent set of ordinary differential equations. The nor- 
mal strain is taken as two-dimensional, uniform, and incompressible, with a contraction 
occuring in the same transverse direction as the uniform shear and temperature gradi- 
ents. The turbulence is assumed to be initially isotropic but becomes anisotropic in the 
presence of the shear and normal strain. 

INTRODUCTION 

The effects of uniform shear and of normal strain on weak turbulence have been an- 
alyzed separately in references 1 to  4. There are important cases, however, where 
shear ,and normal strain act simultaneously, as in the boundary layer of fluid flowing 
through a contraction. Effects which are absent when one or the other types of strain 
acts by itself may be present when they act simultaneously. For instance, an apparent 
laminarization seems to occur in the boundary layers of certain accelerating flows 
(refs. 5 to 7). 

A complete solution of the turbulent boundary layer in accelerating flows (or of - any 
turbulent boundary layer) from first principles appears to  be beyond the capabilities of 
our present methods of analysis. In this work, a simplified model is analyzed in an at- 
tempt to obtain some understanding of the effects of combined shear and normal strain on 
turbulence and turbulent heat transfer. Uniform shear and uniform normal velocity gra- 



dients, as well as a uniform transverse temperature gradient, are assumed to be acting 
on a field of initially isotropic turbulence. The turbulence quickly becomes anisotropic 
under the influence of the mean gradients. The turbulent field, although homogeneous in 
the transverse directions, is assumed to be only locally homogeneous in the longitudinal 
or flow direction; that is, the effects of changes in the intensity of the turbulence over a 
correlation or mixing length in the longitudinal direction are negligible. The normal 
strains in the present model correspond to a two-dimensional contraction with the trans- 
verse normal strains occuring in the same direction as the transverse shear and temper- 
ature gradients. 

Navier-Stokes and energy equations at two points in the turbulent fluid. The system is 
made determinate by assuming that the turbulence is weak enough for te rms  containing 
triple correlations to  be negligible compared with the other te rms  in the equations. Al- 
though that assumption may limit the highest Reynolds number for which the analysis is 
valid, the analysis is of interest in that it gives an asymptotically exact solution for tur-  
bulence in the limit of low Reynolds numbers. Moreover, when mean velocity and tem- 
perature gradient te rms  a r e  present in the equations, the tubulence may not have to  be -as 
weak for  the triple correlation te rms  to be negligible compared with other te rms  as it 
would if the te rms  were not present. 

next section. 

A system of correlation equations can be constructed by writing the incompressible 

The correlation and spectral equations used in the analysis will be considered in the 

BASIC EQUATIONS 

Two-point steady-state correlation equations for weak locally homogeneous turbu- 
lence a r e  obtained in references 3 and 4 and are given by 

- aUi __ auj 
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where ui and u! are fluctuating velocity components at the arbitrary points P and P', 
Ui is a mean velocity component, xi is a space coordinate, ri is a component of the 
vector extending from a point P to P', t is the time, p is the density, v is the kine- 
matic viscosity, p is the instantaneous pressure, and T is the temperature fluctuation. 
Bars  over t e rms  designate correlations or averaged quantities. The subscripts can take 
on the values 1, 2, or 3, and a repeated subscript in a term indicates a summation. 

In obtaining equations (1) to (5), the instantaneous velocities and temperatures in the 
incompressible Navier-Stokes and energy equations were first broken into mean and fluc- 
tuating components. The resulting equations were then written at two points in the tur- 
bulent field, multiplied by appropriate temperatures or velocity components and averaged. 
The equations for correlations involving pressures were obtained by taking the divergence 
of the Navier-Stokes equation and applying continuity. In order t o  make the locally- 
homogeneous approximation, the turbulence was considered homogeneous over a correla- 
tion length, or  the scale of the inhomogeneity was much greater than the scale of the tur- 
bulence. Thus, a/axi << a/ari, where the operators operate on two-point Correlations. 
(A calculation for axially decaying turbulence without mean velocity gradients (ref. 2, 
fig. 3) implies that this is a good approximation except in the region very close to  the 
virtual origin of the turbulence. ) Also, for locally homogeneous turbulence, the mean 
velocity and mean temperature gradients could be considered to  vary linearly over dis- 
tances for which the correlations are appreciable. Finally, in order to  make the set of 
equations determinate, the turbulence was assumed to be weak enough to neglect t e rms  
containing triple correlations. The turbulence in a flow with large velocity or tempera- 
tu re  gradients may not have to be as weak as that in a flow without mean gradients. The 
t e rms  containing those gradients may be large compared with triple correlation terms, 
even if the turbulence is moderately strong. 

dimensional Fourier transforms defined as follows: 

J 

Equations (1) to (5) can be converted to  spectral form by introducing the usual three- 
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where if is a wave number vector having the dimension l/length and dif = dK1 dK2 dK3. 
Taking the Fourier transforms of equations (1) to (5), eliminating the pressure-velocity 
and pressure-temperature terms, and using continuity result in (see ref. 3) 

where 6. .  is the Kronecker delta. 
Equations (11) and (12) give contributions of various processes to the rates  of change 

(with xk) of spectral components of the turbulent energy tensor E and of the turbulent 
heat transfer vector 
are transfer te rms  which transfer activity into or out .of a spectral component by the 
stretching o r  compressing of turbulent vortex filaments by the mean velocity gradient, as 
discussed in references 2 to 4. The te rms  with K~ in the denominator are spectral 
components of pressure-velocity or pressure-temperature correlations and transfer ac- 
tivity between directional components (ref. 2). The last te rms  in the equations are dis- 
sipation terms,  which dissipate activity by viscous or by conduction effects. The dis- 
sipation te rm in equation (12) contains both viscous and conduction effects because it dis- 
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sipates spectral components of velocity-temperature correlations. The remaining te rms  
in the equations produce energy or activity by mean velocity or temperature gradient ef- 
fects. 

For the present model, a two-dimensional contraction with the through-flow in the 
xl-direction and the contraction in the x3-direction is considered. The shear and tem- 
perature gradients also occur in the x3-direction. Thus, the mean gradients present in 
the flow are aU1/aX1, aU3/aX3, aUl/aX3, and aT/ax3. These gradients a r e  all taken 
to be independent of position. By continuity of the mean flow, 

Similarly, set 

and 

- aT = b  

ax3 

In addition, it is assumed that the turbulence is homogeneous in the transverse directions 
and that it changes only in the longitudinal or x1 direction, so that 

uk-=ul- a a 
&k &1 

where the operators operate on the correlations or their Fourier transforms. For the 
model considered, then, equations (11) and (12) can be written as 
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(17) 
- f?? - 6i$$03j + K 1 -  4 - K 3  -1 'CP i j  - 2 V K  2 'pij acp . . 

aK 1 aK3 

and 

- (2 - Gj$y3 + K~ A *- - K~ 91 - bcp3j - (a + V ) K  2 y .  (18) 
3 

aK 1 aK3 

In these equations the shear and normal strain te rms  are separated and written as the 
first and second bracketed terms on the right sides of the equations. 

For solving equations (17) and (18) it is assumed that the turbulence is isotropic at 
x1 = ( x ~ ) ~ .  That condition is satisfied by the relation 

Jo (K 2 6.. - K . K . )  
1.l 1 3 

(cp. . )  = - 
lJ O 12n2 

where Jo is a constant that depends on initial conditions (refs. 2 (eq. (43)), 8,  and 9). 
For the initial condition on yi (.t x1 = (xl) ) it is assumed that . 

0 

Thus, if the initial turbulence is produced by flow through a grid, that grid is unheated, 
and the temperature fluctuations are produced by the interaction of the mean temperature 
gradient with the turbulence. 
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SOLUTION OF SPECTRAL EQUATIONS 

Equations (17) and (18) are first-order partial differential equations in the three in- 
dependent variables x l ,  K ~ ,  and K ~ .  In solving the equations, it is convenient to intro- 
duce the velocity ratio c which, for a uniform normal strain,’ is 

Then, 

0 
(U,) 

u l -=sc-  a a 
*1 ac 

In order to reduce equations (17) and (18) to ordinary differential equations, the running 
variables 5 i, 5 3, and q are considered, of which K ~ ,  K ~ ,  and c are particular values 
such that 5 
set of equations in place of K ~ ,  K ~ ,  and c, the resulting equations will, of course, auto- 
matically satisfy the original set. 

= K~ and t 3  = K~ when q = c. If 5 1, t3 ,  and q a r e  introduced into the 

Equation (17) (and eq. (18) with 9.. replaced by 7 . )  will then be of the form 
4 J 

To  determine under what conditions 

note that p.. is a function of 5 1, 5 3, q, and K ~ ,  so that 
9 

Comparison of this last equation with equation (23) shows that they are equivalent if 
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or 

l a  2 
= K1K3 - 2 s K 1  

t1t3 - 1 5  521 = (constant)l 
2 s  

and 

7t1 = ( c ~ n s t a n t ) ~  = C K ~  (2 5) 

2 
Thus, equation (23) will hold if 5153 - (1/2) (a/s)<, and q t l  are constant during inte- 
gration. With the introduction of equations (21) to (25), equations (17) and (18) become 
ordinary differential equations, components of which are 

8 

p13 



where 

and 

(3 3) 

In these equations t3  has been eliminated by equation (24). The first three equations 
a r e  independent of the remaining ones, but the converse is not true. 

In order to  apply initial conditions to the set of equations (26) to  (31), let q..(t l )  = 

[qij(tljl0 and yi(tl) = 

satisfy the desired initial conditions that q . . ( ~ ~ )  = [ 'p. . (~~)]  

u 
when 7 = 1. These conditions will then automatically 

and Y ~ ( K ~ )  = [ Y ~ ( K ~ ) ]  when 
l1 0 0 9 

since, by definition, t 1  = K~ when 7 = c. Equation (25) shows that 

Equation (34) gives the value of t 1  at which to start the integration for given values of 
K~ and c. In order t o  satisfy the initial conditions (19) and (20), let 
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Jo h2 
1) = - 

2 6n 

y .  = 0 
1 

where g and h are again given by equations (32) and (33). The integration of equa- 
tions (26) to  (31) then goes from (e1) to  E l  = K ~ .  We are mainly interested in the final 

values of 9.. and yi, for which t1 = K~ (and t2 = K~ and q = c). The quantity E l  can 
be considered as a dummy variable of integration. 

t o  dimensionless form by introducing the following dimensionless quantities: 

0 

4 

In order to  solve equations (26) to (31) numerically, it is convenient to convert them 

1 
K* = I"" - xO) - 

1/2 

i K (3 5) 

YT = ($)Yi 
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a* = r uO - '" 
V 

a! 
Pr = - 

a (3 9) 

In addition, spherical coordinates were introduced into the equations by using the trans- 
form at ions 

K~ = K cos cp sin 

K~ = K sin cp sin 0 

J K3 = K COS 6 

The integrations were carried out numerically on a high-speed computer for various fixed 
values of K*, 6, cp, a, and c. Directionally integrated spectrum functions can be ob- 
tained from (see refs. 2 and 10) 

f'y) = [y2'f[) 52.. K~ sin 6 dcp d6 

'ij 

In this equation, 52.. is the vorticity spectrum tensor given in reference 11 as 
11 

(43) 
2 2 52.. 9 = ( 6 . . K  1J - K.K.)cpkk 1 1  - K cpij 

The spectrum functions given by equations (42) can be integrated over all wave num- 
bers to give 

(44) 
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-- 
Thus, q.. are distributed 
among various wave numbers or eddy sizes. Computed spectra and correlations will be 
considered in the next section. For the quantities which involve temperature gradients, 
the curves will be given for a gas with a Prandtl number Pr of 0.7. 

ri, and A . .  show how contributions to  uiuj, T U ~ ,  and w.w 
1J ’ 9 1 j  

RESULTS AND DISCUSSION 

Calculated dimensionless energy spectra spectra of qf) and =$ spectra are 
plotted in figures 1 and 2. The spectra are plotted for several  values of the shear param- 
eter and the normal strain parameter which are, respectively, proportional to aUl /2x3 
and aUl /al. Both parameters are, in addition, proportional to longitudinal distance, 
so that increasing longitudinal distance has an effect similar to that of increasing the ve- 
locity gradients. 

When plotted by using the similarity variables shown in figures 1 and 2, the dimen- 
sionless spectra for no shear and normal strain effects (a* = s* = 0) are the same for all 
values of xl, although the turbulence itself decays. Comparison of the various curves 
indicateshow normal strain and shear effects will alter the spectra for a given position 
and initial mean velocity. If, for instance, a dimensionless spectrum lies above the 
curve for a* = s* = 0, the turbulent activity for that case is greater than it would be for 
no shear or normal strain effects. 

The curves in figures 1 and 2 (as well as the succeding ones) a r e  all for positive 
values of s* and correspond to  an accelerating flow. The curves indicate that, in gen- 
eral, the effects of both shear and normal strain in an accelerating flow a r e  to  feed en- 
ergy or activity into the turbulent field. The effect of shear on the spectra is greater at 
small values of s* than at larger ones; that is, it is greater when the ratio a/s is 

( 

large. 
A turbulent velocity-component parameter (v/s) with i = 1, 2, and 3, is 

plotted against longitudinal velocity ratio in figure 3. This parameter, in contrast to the 
spectral parameters in figures 1 and 2,  does not contain x1 - (x,) , and thus can be used 

to show how up changes with longitudinal position (or velocity ratio) as well as with 
shear. Included in the plot is the curve obtained by solving equation (17) with the effects 

0 - 

of shear and normal strain absent. This solution gives 

JO 48& 
(4 5) 

Although the turbulence was taken to  be initially isotropic, the results here  show the tur- 
bulence as already strongly anisotropic from the effects - of shear and normal strain. A s  
was the case for the spectra, these results show that u: is increased by the shear and 
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Figure 1. - Effects of u n i f o r m  shear and normal s t ra in  on  spectra of  dimensionless tu rbu len t  energy. 
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Figure 2. - Effects of un i form shear and normal strain on spectra of dimensionless eddy conductivity; Prandtl n u m -  
ber, 0. 7. 
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Figure 3. -Effect of uni form shear and normal strain (velocity ratio) on dimensionless 
variance of turbulent  velocity components. 
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that the effect of shear is greatest at low values of velocity ratio or normal strain param- 
eter. For low values of velocity ratio, all components decay because of the effects of 
viscosity. In that region the lateral components decrease less rapidly than they would if 
the effects of normal strain were neglected (compare with dashed curve) and, for a* = 0, 
the longitudinal component decays more rapidly. At larger velocity ratios, the compo- 
nents in the x2- and x3-directions begin to  increase as the effects of normal strain offset 
those of viscosity. The component in the xl-direction continues to decrease, but at a 
slower rate than it would if the effects of normal strain were absent. In this way, the 
curves in figure 3, which are for a two-dimensional contraction, differ from those for the 
axially symmetric strains in references 1, 3, and 4. For the axially symmetric strains, 
the longitudinal component decays more rapidly than it would for no effects of strain, 
whereas, in the present two-dimensional contraction, it decays less  rapidly, except at 
small velocity ratios. Thus, in this case energy is fed into each of the three components 
of the turbulent energy by normal strain. 

In an attempt to understand the trends shown in figure 3, the three components of the 
dimensionless turbulent vorticity ( v / s ) ~ / '  Jo a re  plotted against velocity ratio in fig- 
ure  4 for a* = 0. The dashed curve for no effects of strain was obtained from the equation 

/ 

Figure 4. - Effect of un i fo rm normal  strain (velocity 
ratio) on dimensionless variance of t u rbu len t  
vort ic i ty components; shear parameter, a*, 0. 
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The plot shows that the vorticity components in both the xl- and x2-directions decay 
less rapidly than they would if the effects of strain were absent, while the x3-component 
decays more rapidly. On the other hand, for - the axially symmetric cases considered 
previously, only the longitudinal component wf decayed less rapidly (refs. 3 and 4). 
Thus, although in the axially symmetric case, the turbulent vortex filaments all tended 
to line up in the longitudinal direction, in the present two-dimensional contraction there 
is also a tendency (although less pronounced) for an alinement to occur in the x2-direction 
(direction of no contraction). These trends a re  in agreement with the trends for velocity 
fluctuations shown in figure 3. The velocities associated with a vortex filament will, of 
course, lie in planes normal to  the direction of the filament. Thus, the vortex filaments 
alined in the longitudinal direction will tend to  feed energy into the two lateral velocity 
components, while those alined in the x2-direction can give energy to the longitudinal ve- 
locity component, as well as to  the x3-component: 

at large velocity ratios for several types of mean strain. A qualitative comparison is 
given in the following table: 

It may be of interest to compare the behavior of the components of turbulent energy 

Type of mean normal strain 

~ .~ 

Incompressible axisymmetric strain for 
flow in a cone (ref. 3) 

Uniform incompressible axisymmetric 
strain (refs. 1 and 4) 

Uniform compressible longitudinal axi- 
symmetric strain (no lateral strain) 
(ref. 12) 

Uniform incompressible two- 
dimensional strain (present analysis) 

.. - 

Behavior of turbulent energy components at large velocity ratios 
in accelerating flow 

Lateral components increase with longitudinal distance. Longitudi- 
nal component decreases faster than it would without effect of 
strain. 

Lateral components approach steady state. Longitudinal compo- 
nent decreases faster with distance than it would without effects 
of strain. 

Lateral components decrease less rapidly with distance than they 
would without effects of strain. 
more rapidly. 

Longitudinal component decreases 

Lateral components increase with longitudinal distance. Longitudi- 
nal component decreases, but at a rate  slaver than it would with- 
out effect of strain. 

Figure 5 shows the effect of uniform shear and normal strain (velocity - -  ratio) on 
- ratios of the turbulent energy components for accelerating flow. Both u i  /uf and 

creasing normal strain parameter s*; that is, the effect of shear is to  make u: and up 
u $ / q  tend to  decrease with increasing shear parameter a* and to increase - with in- - 
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- -2 2 less than ul, and normal strain tends to  make those quantities greater than ul. 
Dimensionless turbulent heat-transfer parameters (v5/2/J0s3/2)zi /b with i = 3 

and 1 are plotted in figure 6 as functions of velocity ratio and shear parameter. The 
trends shown here are qualitatively similar to those for the dimensionless velocity pa- 
rameter shown in figure 3. It might seem surprising that there should be turbulent heat 
transfer in the longitudinal direction xl, as given by the temperature-velocity correla- 
tion 7u1, since there is no temperature gradient in the xl-direction. However, since 
there is a correlation between 7 and u3 (because of the temperature gradient dT/dx3) 
and a correlation between u1 and u3 (because of the velocity gradient dU1/dx3), it 
seems reasonable that there should be a correlation between 7 and ul, and thus a heat 

- 

transfer in the xl-direction. 
1/2 - 1/2 

Shear correlation coefficient --/(?) (ui)  is plotted as a function of 
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longitudinal velocity ratio and shear parameter in figure 7. The shear correlation is, of 
course, zero for zero  shear and increases as a* increases. Except at small velocity 
ratios and large values of shear parameter, where some increase in correlation with in- 
creasing normal strain (velocity ratio) occurs, normal strain tends to destroy the shear 
correlation. 

of velocity ratio and shear parameter. The eddy conductivity and eddy viscosity are de- 
fined by the relations 

Figure 8 shows the ratio of eddy conductivity to eddy viscosity plotted as a function 

and 

As the shear parameter a* increases, the ratio ch/c increases, reaches a maximum, 
and then decreases, although the trend is confined to moderately low values of velocity 
ratio. Results from reference 10 for no normal strain show that E ~ / E  ultimately ap- 
proaches 1 as a* continues to increase. The results in figure 8 indicate that ch/c 
reaches a maximum with increasing velocity ratio, as well as with increasing a*. 

'8r Shear p a r y e t e r ,  ao 

I- 

Figure 7. - Effect of un i fo rm shear and  normal  s t ra in  (velocity ratio) o n  
shear correlat ion coefficient. 
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Figure 8. -Effect of un i fo rm shear and normal strain (velocity ratio) on  ratio of 

eddy conductivi ty to eddy viscosity; Prandtl  number, 0.7. 

As mentioned in the INTRODUCTION an apparent laminarization sometimes occurs 
in the turbulent boundary layers of accelerating flows. Some observed low heat-transfer 
values for flow in nozzles can evidently be explained by the fact that the mean velocity in- 
creases  with distance in an accelerating flow (ref. 3). Some of the visual observations, 
however, seem to indicate that the turbulent energy itself decreases (ref. 5). Back, 
Massier, and Gier (ref. 7) suggested that the effect may be caused by a normal strain 
te rm in the energy equation which acts like a sink for turbulent energy. The t e r m  
2s(u$ - us) corresponds to  the second term in equation (29), if that term is multiplied by 
- t1  and integrated - over all wave numbers. The term can act like a sink only if us  is 
greater than ui ;  otherwise, it acts like a normal strain production term. The results in 

- -  
- 

- -  
figure 5 for u”3/””1 indicate that the normal-strain production term will be negative at 
low values of velocity ratio and high values of shear parameter. On the other hand, the 
shear production te rm -2aulu3 (which corresponds to the third term in equation (29) 
multiplied by - t l  and integrated over all wave numbers) will always be positive. 

The ratio of the two production te rms  is shown in figure 9 as a function of longitudi- 
nal velocity ratio and shear parameter. The curves show that the normal-strain produc- 
tion term can be negative and thus act like a sink term for turbulent energy at low veloc- 
ity ratios and high shear. However, in order for that term to offset the effect of the 
shear production term, the ratio of the two te rms  would, of course, have to be less than 
-1, and that does not occur for the results in figure 9. It is possible that the ratio could 
be less than -1 at sufficiently large values of shear parameter. There appears to be a 
problem in making the normal strain production term sufficiently negative to  offset the 
effect of the shear production term. The shear must be large to  make the normal strain 
production te rm negative by making u! > u$ . In that case, however, the shear produc- 
tion term will also be large. The curves in figure 9 show that as velocity ratio (or nor- 
mal strain parameter) increases, the normal strain production term becomes strongly 
positive, since the effect of normal strain is to  make u$ < u!. 

( - -) 
- -  
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SUMMARY OF RESULTS 

The results indicate that, in general, both shear and normal strain in an accelerat- 
ing flow increase the energy in the turbulent field in comparison to  that which would be 
present for no shear or normal strain. This increase occurs in spite of the normal- 
strain production term in the turbulent energy equation that can, under certain conditions 
of combined shear and normal strain, be negative and thus act as a turbulent energy sink. 
For the results computed, the shear production te rm more than offsets the effect of the 
sink term, and the net result is that the turbulent energy increases. 

The Eresent results for a two-dimensional contraction show that the lateral compo- 
nents of the turbulent energy increase with longitudinal distance at large mean velocity 
ratios. The longitudinal component decreases, but at a slower rate  than it would if the 
effects of normal strain were absent. Thus, energy is fed into each of the three compo- 
nents of the turbulent energy by normal strain (and shear). This case differs from axially 
symmetric strain cases of accelerating flows, where the longitudinal turbulence compo- 
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nent decays faster with distance than it would if the effects of normal strain were absent. 
For the two-dimensional contraction, although most of the vortex filaments tend to line 
up in the longitudinal direction, there is also some tendency for them to aline in the 
transverse direction of no normal strain. 

The normal strain and shear both tend to produce anisotropy in the turbulence, but 
they work in opposite directions. The normal strain increases the ratios of the lateral 
components to the longitudinal component of the turbulent energy, while shear decreases 
the ratio. 

In general, the turbulent shear correlation tends to  be destroyed by the normal 
strain. An exception occurs at small  velocity ratios and large shear, where some in- 
crease in correlation with increasing normal strain (velocity ratio) occurs. 

As either the shear or normal strain parameter increases, the ratio of eddy conduc- 
tivity to eddy viscosity reaches a maximum and then decreases. In the presence of lat- 
eral mean-shear velocity gradients and lateral temperature gradients, turbulent heat 
transfer occurs in the longitudinal as well as in the lateral direction. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, August 22, 1967, 
129-01-11-05-22. 
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APPENDIX - SYMBOLS 

a 

a* 

b 

C 

g 

h 

JO 

Pr 

P 

r 
-+ 

S 

S* 

T 

Ui 

ui 

u.u* 
1 1  

xi 
CY 

shear velocity gradient, 
dU1/&3 

shear parameter, defined by 

eq. (39) 

transverse temperature gradi- 
ent, dT/dx3 

axial mean velocity ratio, 

defined by eq. (32) 

defined by eq. (33) 

constant that depends on initial 
conditions 

Prandtl number, V/CY 

pressure 

vector between points P and P’ 

longitudinal normal strain, 

normal strain parameter, de- 
fined by eq. (21) 

mean temperature 

mean velocity component 

fluctuating velocity component 

space coordinate 

thermal diffusivity 

dimensionless spectrum function 
for eddy conductivity, 

n 

Jouo 
defined by eq. (42) 

defined by eq. (9) 

defined by eq. (38) 

Kronecker delta 

eddy viscosity 

eddy conductivity 

defined by eq. (10) 

running o r  dummy variable that 
equals c when t1  = u1 and 
53 = K3 

angular coordinates (see eq. (41)) 

wave number component 

defined by eq. (35) 

defined by eq. (42) 

kinematic viscosity 

running or  dummy variables for 
which K~ and K~ a r e  partic- 
ular values 

density 

temperature fluctuation 
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T U i  

q i j  

q 
J/ i j  

temperatur e-velocity correlation 

v5/2(x - x0)3/2 

Jou;’2 b 

defined by eq. (6) 

defined by eq. (37) 

defined by eq. (42) 

given by eq. (43) 

turbulent vorticity variance 

Subscripts 

0 at virial origin of turbulence 
where turbulent energy would 
be infinite (It is assumed that 
turbulence is isotropic at xo 
and that velocity and temper- 
ature gradients begin to act 
there.) 

1 in flow direction 

3 in direction of transverse strain 
and of mean shear velocity and 
temperature gradients 

Superscripts 
1 at point P1 

* dimensionless quantities 
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